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A Random Finite Set Approach to Space Junk Tracking and
Indentification

Ba-Ngu Vo1, Ba-Tuong Vo1,
1Department of Electrical and Computer Engineering

Curtin University, Perth, WA, Australia.

ABSTRACT

The report summarizes the feasibility study performed for AFRL/AOARD regarding the use of Random Finite
Set (RFS) filtering approach for tracking orbital space debris. Specifically, we investigate the capability of the
RFS approach to accommodate: nonlinear motion and measurement models; unknown and time varying target
number; and limited sensor field-of-view. This report shows the capability of the random finite set approach
to provide large scale multi-target tracking. In particular it is shown that an approximate filter known as the
labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard
laptop computer.

1. INTRODUCTION

Space junk is the term commonly used to refer to the many millions of pieces of waste products and defunct
objects currently in orbit around the earth, which are largely a result of human activities in relation to space
exploration.1,9 Although the size and mass of individual fragments varies from millimetres to metres and grams
to tonnes, even the most seemingly insignificant pieces can pose a real risk of collision and destruction for space
related infrastructure and exploration. However it is currently understood that the most dangerous debris are
those with diameters between 1 and 10 centimetres, of which it is estimated that there are several hundred
thousand, since they are small enough to be difficult to track but large enough to cause significant damage.
Fragments larger than 10cm can generally be tracked and avoided for time being, and those smaller than 1cm
can generally be shielded from with appropriate apparatus.

A prerequisite for space debris management is to understand and maintain awareness of orbital space objects
and the space environment, which, in the space domain, is called Space Situational Awareness (SSA). Utilising
available data from multiple sources to keep track of multiple space objects is a core component of SSA.4 There
are three major approaches to tracking multiple objects: Multiple Hypotheses Tracking (MHT);3 Joint Proba-
bilistic Data Association (JPDA);2 and Random Finite Set (RFS).12 The comprehensive study of astrodynamics
standards in,4 identified data association, information fusion and nonlinear estimation as three key research areas
for tracking multiple space objects. MHT and its variations involve the propagation of data association hypothe-
ses in time. The JPDA approach weights individual observations by their association probabilities. MHT and
JPDA are classical approaches that dominated the field of multi-target tracking and are well documented in.2,3

The RFS approach provides a general systematic treatment of multi-target system by modeling the multi-target
state as an RFS and accommodates

• nonlinear motion and measurement models

• unknown time varying target number

• multi-sensor data with support for heterogeneous sensor types

• limited sensor field-of-view

Scalable multi-target tracking solutions are needed in SSA where the number of targets is large.9 However,
multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions

Further author information: Ba-Ngu Vo, E-mail: ba-ngu.vo@curtin.edu.au
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usually do not scale gracefully with problem size. The RFS approach provides the flexibility to derive multi-target
tracking algorithms that bypasse the data association problem e.g the Probability Hypothesis Density (PHD),10

Cardinalized PHD,11 and Multi-Bernoulli filters.15,16 Although RFS approaches have been extensively applied in
aerospace or the traditional defence related problems, there has been very little activity in the space situational
awareness and specifically in the space junk monitoring domain. Current works include an application to tracking
in the 0-1 case, or Bernoulli filtering, where at most one target is present with significant nonlinearities.?,?

Additionally a conceptual solution has been derived assuming a fixed a known number of targets.? Still the
feasibility of RFS/FISST approaches for space junk monitoring remains an open question. The broad objectives
of this study are to

• Investigate feasibility of RFS based approach for large scale real time space junk monitoring

• Investigate methodological and computational strategies for practical implementation

The report is organized as follows. Background material on the RFS approach to multi-target tracking needed
for this work is given in Section 2. In Section 3 we present the labeled multi-Bernoulli filter–an approximation
to the optimal Bayes multi-target tracking filter–that has the potential to address large scale multi-target prob-
lems.In Section 4 we present a numerical example involving 1500 targets. To the best of our knowledge this is the
only algorithm that can track such a large number of targets in clutter using only a standard laptop computer.

2. LABELED RANDOM FINITE SET AND MULTI-TARGET TRACKING

The random finite set (RFS) or finite set statistics (FISST) paradigm12 for multi-object estimation is an ideal
candidate platform for developing top-down algorithmic solutions for space junk monitoring. The RFS paradigm
was initially developed as a completely new paradigm for multi-object estimation, encompassing a principled
mathematical foundation as well as appropriate calculus like tools for manipulating probability densities of
finite-set-valued random variables. The framework is general enough to accommodate non-linear motion and
measurement models, including image measurement models, unknown and time varying number of target, arbi-
trary sensor field-of-view, and multi-sensor data support for heterogeneous sensor types (and even non-standard
data), see.12 Thus the RFS approach is ideally suited to networked multi-sensor multi-object estimation prob-
lems, such as space situational awareness.

RFS-based multi-target filters such as the Probability Hypothesis Density (PHD),10 Cardinalized PHD
(CPHD)11 and multi-Bernoulli filters15,16 can avoid data association. Indeed, under low clutter, it was demon-
straeted that a version of CPHD filter can simultanenously handle over a thousand targets on a standard laptop
computer. However these filters, in principle, are not multi-target trackers because they rest on the premise that
targets are indistinguishable.

In,17 the notion of labeled RFSs is introduced to address target trajectories and their uniqueness. Moreover,
an analytic solution to the Bayes multi-target tracking filter known as the δ-generalized labeled multi-Bernoulli
(δ-GLMB) filter was developed. Apart from producing tracks, the δ-GLMB filter does not assume high detection
probability and low clutter and outperforms the PHD/CPHD and multi-Bernoulli filters. In this report we show
that the labeled RFS technique is capable of tracking simultaneously thousands of targets in heavy clutter with
different birth and death times, on a standard laptop computer. The key innovation is the family of labeled RFS
conjugate priors in17 and a principled and efficient and highly parallelizable approximation, called the labeled
multi-Bernoulli filter.19

2.1 Random Finite Sets

In a multiple target system, the number of targets varies with time due to the appearance and disappearance
of targets, and the number of measurements received at each time step does not necessarily match the number
of targets due to missed detections and clutter. The objective of multiple target filtering is to jointly estimate
the number of targets and their states from the accumulated observations. Suppose that at time k, there
are N(k) target states xk,1, . . . , xk,N(k), each taking values in a state space X ⊆ Rnx , and M(k) observations
zk,1, . . . , zk,M(k) each taking values in an observation space Z ⊆ Rnz . Define the finite sets

Xk = {xk,1, . . . , xk,N(k)} ⊂ X,
Zk = {zk,1, . . . , zk,M(k)} ⊂ Z,
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to be the multiple target state and multiple target observation respectively.

In the Bayesian estimation paradigm, the state and measurement are treated as realizations of random
variables. Since the (multi-object) state Xk is a finite set, the concept of a random finite set (RFS) is required
to cast the multi-object estimation problem in the Bayesian framework. An RFS is simply a random variable
that take values as (unordered) finite sets, i.e. a finite-set-valued random variable. The space of finite subsets
of X does not inherit the usual Euclidean notion of integration and density. Hence, standard tools for random
vectors are not appropriate for RFSs. Mahler’s Finite Set Statistics (FISST) provides powerful yet practical
mathematical tools for dealing with RFSs.10,12 The notion of probability densities, generating functionals, and
calculus like tools for are provided by the theory of finite set statistics.10,12 For connections between aspects of
the FISST notion of probability densities and standard measure theoretic probability theory we refer the reader
to.14

2.2 Labeled Random Finite Sets

To incorporate target identity, each state x ∈ X is augmented with a unique label ℓ ∈ L= {ℓi : i ∈ N}, where N
denotes the set of positive integers and the ℓi’s are distinct. More detail on labeled RFS can be found in.17,18

Definition 2.1. A labeled RFS with state space X and (discrete) label space L is an RFS on X×L such that
each realization has distinct labels.

Let L : X×L → L be the projection L((x, ℓ)) = ℓ, then a finite subset set X of X×L has distinct labels if and
only if X and its labels L(X) = {L(x) : x∈X} have the same cardinality, i.e. δ|X|(|L(X)|) = 1. The function

∆(X) , δ|X|(|L(X)|) is called the distinct label indicator.

The unlabeled version of a labeled RFS is obtained by simply discarding the labels. Consequently, the
cardinality distribution (the distribution of the number of objects) of a labeled RFS the same as its unlabeled
version.17

For the rest of the paper, single-object states are represented by lowercase letters, e.g. x, x while multi-object
states are represented by uppercase letters, e.g. X, X, symbols for labeled states and their distributions are
bolded to distinguish them from unlabeled ones, e.g. x, X, π, etc., spaces are represented by blackboard bold
e.g. X, Z, L, N, etc., and the class of finite subsets of a space X is denoted by F(X). The inner product of two
functions f and g is denoted by ⟨f, g⟩ ,

∫
f(x)g(x)dx. The integral of a function f :X×L → R is given by∫
f(x)dx =

∑
ℓ∈L

∫
X
f((x, ℓ))dx.

2.3 Labeled multi-Bernoulli RFS

A labeled multi-Bernoulli RFS X with state space X, label space L and parameter set {(r(ζ), p(ζ)) : ζ ∈ Ψ},
is a multi-Bernoulli RFS on X augmented with labels corresponding to the successful (non-empty) Bernoulli
components, i.e. if the Bernoulli component (r(ζ), p(ζ)) yields a non-empty set, then the label of the corresponding
state is given by α(ζ), where α : Ψ → L is a 1-1 mapping. A labeled multi-Bernoulli RFS has (multi-target)
density given by17

π ({(x1, ℓ1), ..., (xn, ℓn)})=δn(|{ℓ1, ...ℓn}|)
∏
ζ∈Ψ

(
1−r(ζ)

) n∏
j=1

1α(Ψ)(ℓj)r
(α−1(ℓj))p(α

−1(ℓj))(xj)

1− r(α
−1(ℓj))

.

where

1Y (X) ,
{

1, if X ⊆ Y
0, otherwise.

is the inclusion function. For convenience we use the abbreviation π = {(r(ζ), p(ζ))}ζ∈Ψ for the density of a
labeled multi-Bernoulli RFS. Although the formulation allows for a general mapping α for the labels, in this
work we assume that α is an identity mapping in order to simplify notations. Thus superscripts for component
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indices correspond directly to the label in question. The density of a labeled multi-Bernoulli RFS with parameter
set π = {r(ℓ), p(ℓ)}ℓ∈L is given more compactly by

π(X) = ∆(X)w(L(X))pX (1)

where pX =
∏

x∈X p(x),

w(L) =
∏
i∈L

(
1− r(i)

)∏
ℓ∈L

1L(ℓ)r
(ℓ)

1− r(ℓ)
, (2)

p(x, ℓ) = p(ℓ)(x). (3)

2.4 Generalized Labeled Multi-Bernoulli RFS

A generalized labeled multi-Bernoulli RFS is a labeled RFS on X×L distributed according to

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
[
p(c)
]X

(4)

where C is a discrete index set, w(c)(L) and p(c) satisfy∑
L⊆L

∑
c∈C

w(c)(L) = 1, (5)∫
p(c)(x, ℓ)dx = 1. (6)

The cardinality distribution of a generalized labeled multi-Bernoulli RFS is given by

ρ(n) =
∑

L∈Fn(L)

∑
c∈C

w(c)(L) (7)

The labeled multi-Bernoulli RFS distributed by (1) is a special case of the generalized labeled multi-Bernoulli
RFS with

p(c)(x, ℓ) = p(ℓ)(x)

w(c)(L) =
∏

i∈L−L

(
1− r(i)

)∏
ℓ∈L

1L(ℓ)r
(ℓ)

comprising a single component in which case the superscript (c) is omitted.

2.5 GLMB Multi-target Tracking Filter

In labeled RFS multi-target tracking, targets are identified by an ordered pair of integers ℓ = (k, i), where k
is the time of birth and i ∈ N, with N denoting the set of natural numbers, is a unique index to distinguish
objects born at the same time. The label space for objects born at time k, denoted as Lk, is then {k} × N. An
object born at time k, has state x ∈ X×Lk. The label space for targets at time k (including those born prior to
k), denoted as L0:k, is constructed recursively by L0:k = L0:k−1 ∪ Lk (note that L0:k−1 and Lk are disjoint). A
multi-object state X at time k, is a finite subset of X×L0:k.

Let πk(·|Zk) denotes the multi-target posterior density at time k, and πk+1|k denotes the multi-target pre-
diction density to time k. Then, the multi-target Bayes recursion propagates πk in time12 according to the
following update and prediction

πk(Xk|zk) =
gk(zk|Xk)πk|k−1(Xk)∫
gk(zk|X)πk|k−1(X)δX

, (8)

πk+1|k(Xk+1) =

∫
fk+1|k(Xk+1|Xk)πk(Xk|zk)δXk, (9)
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where gk(·|·) is the multi-target likelihood function at time k, fk+1|k(·|·) is the multi-target transition density, to
time k + 1, and the integral is a set integral defined for any function f : F(X×L) → R by∫

f(X)δX =

∞∑
i=0

1

i!

∫
f({x1, ...,xi})d(x1, ...,xi).

The multi-target posterior density captures all information on target number, and individual target states.12

The multi-target likelihood function encapsulates the underlying models for detections and false alarms while
the multi-target transition density encapsulates the underlying models of target motions, births and deaths.

For convenience, in what follows we omit explicit references to the time index k, and denote L , L0:k,
B , Lk+1, L+, L ∪ B, π,πk, π+,πk+1|k, g,gk, f,fk+1|k. In this work we assume the space of birth label B is
finite.

2.6 GLMB Prediction

Given the current multi-object state X, each state (x, ℓ) ∈ X either continues to exist at the next time step with
probability pS(x, ℓ) and evolves to a new state (x+, ℓ+) with probability density f(x+|x, ℓ)δℓ(ℓ+), or dies with
probability 1− pS(x, ℓ). The set of new targets born at the next time step is distributed according to

fB(Y) = ∆(Y)wB(L(Y)) [pB ]
Y

(10)

The birth density fB is defined on X× B and fB(Y) = 0 if Y contains any element y with L(y) /∈ B. The birth
model (10) covers both labeled Poisson and labeled multi-Bernoulli. For a labeled multi-Bernoulli birth model:

wB(J) =
∏

i∈B−J

(
1− r

(i)
B

)∏
ℓ∈J

1B(ℓ)r
(ℓ)
B , (11)

pB(x, ℓ) = p
(ℓ)
B (x). (12)

The multi-target state at the next time X+ is the superposition of surviving targets and new born targets.
Assuming that targets evolve independently of each other and that births are independent of surviving targets,
it was shown in17 that the multi-target transition kernel is given by

f (X+|X) = fS(X+ ∩ (X× L)|X)fB(X+ − (X× L)) (13)

where

fS(W|X) = ∆(W)∆(X)1L(X)(L(W)) [Φ(W; ·)]X

Φ(W;x, ℓ) =

{
pS(x, ℓ)f(x+|x, ℓ), if (x+, ℓ) ∈ W
1− pS(x, ℓ), if ℓ /∈ L(W)

Proposition 2.2. If the current multi-object prior is a generalized labeled multi-Bernoulli of the form (4), then
the predicted multi-object density is also a generalized labeled multi-Bernoulli given by

π+(X+) = ∆(X+)
∑
c∈C

w
(c)
+ (L(X+))

[
p
(c)
+

]X+

(14)

where

w
(c)
+ (L) = wB(L− L)w(c)

S (L ∩ L), (15)

p
(c)
+ (x, ℓ) = 1L(ℓ)p

(c)
S (x, ℓ) + (1− 1L(ℓ))pB(x, ℓ), (16)

p
(c)
S (x, ℓ) =

⟨
pS(·, ℓ)f(x|·, ℓ), p(c)(·, ℓ)

⟩
η
(c)
S (ℓ)

, (17)
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η
(c)
S (ℓ) =

⟨
pS(·, ℓ), p(c)(·, ℓ)

⟩
(18)

w
(c)
S (J) = [η

(c)
S ]J

∑
I⊆L

1I(J)[q
(c)
S ]I−Jw(c)(I), (19)

q
(c)
S (ℓ) = 1−

⟨
pS(·, ℓ), p(c)(·, ℓ)

⟩
. (20)

2.7 GLMB Update

For a given multi-target state X, at time k, each state (x, ℓ) ∈ X is either detected with probability pD (x, ℓ) and
generates a point z with likelihood g(z|x, ℓ), or missed with probability 1−pD(x, ℓ). The multi-object observation
Z = {z1, ..., z|Z|} is the superposition of the detected points and Poisson clutter with intensity function κ.

Definition 2.3. An association map (for the current time) is a function θ : L → {0, 1, ..., |Z|} such that
θ(i) = θ(i′) > 0 implies i = i′. The set Θ of all such association maps is called the association map space. The
subset of Θ with domain I is denoted by Θ(I).

An association map describes which tracks generated which measurements, i.e. track ℓ generates measurement
zθ(ℓ) ∈ Z, with undetected tracks assigned to 0. The condition θ(i) = θ(i′) > 0 implies i = i′, means that a track
can generate at most one measurement at any point in time.

Assuming that, conditional on X, detections are independent, and that clutter is independent of the detec-
tions, the multi-object likelihood is given by

g(Z|X) = e−⟨κ,1⟩κZ
∑

θ∈Θ(L(X))

[ψZ(·; θ)]
X

(21)

where

ψZ(x, ℓ; θ) =

{
pD(x,ℓ)g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0

1− pD(x, ℓ), if θ(ℓ) = 0
(22)

Proposition 2.4. If the prior distribution is a generalized labeled multi-Bernoulli of the form (4), then, under
the multi-object likelihood function (21), the posterior distribution is also a generalized multi-Bernoulli given by

π(X|Z) = ∆(X)
∑
c∈C

∑
θ∈Θ(L(X))

w
(c,θ)
Z (L(X))

[
p(c,θ)(·|Z)

]X
(23)

where

w
(c,θ)
Z (L) ∝ w(c)(L)[η

(c,θ)
Z ]L, (24)

p(c,θ)(x, ℓ|Z) =
p(c)(x, ℓ)ψZ(x, ℓ; θ)

η
(c,θ)
Z (ℓ)

, (25)

η
(c,θ)
Z (ℓ) =

⟨
p(c)(·, ℓ), ψZ(·, ℓ; θ)

⟩
, (26)

For a valid label set L, the updated weight w
(c,θ)
Z (L) is proportional to the prior weight w(c)(L) scaled by the

product [η
(c,θ)
Z ]L of single-object normalizing constants.

The above results are the prediction and update step of the δ-generalized labeled multi-Bernoulli tracking
filter,17 also known as the Vo-Vo filter (see Mahlerbook2014). Tractable techniques for truncating the posterior
and prediction densities were proposed based on the k-shortest paths and ranked assignment algorithms, see18

for further details.

Distribution A: Approved for public release. Distribution is Unlimited.



3. LABELED MULTI-BERNOULLI FILTER FOR LARGE SCALE TRACKING

The labeled multi-Bernoulli filter is an approximation of the δ-generalized labeled multi-Bernoulli filter using
labeled multi-Bernoulli RFS. The number of components in the the Vo-Vo filter grows exponentially, whereas the
growth is linear for a labeled multi-Bernoulli representation. In this section we outline the labeled multi-Bernoulli
filter and its implementation, further detail can be found in.19

3.1 LMB Prediction

It was shown in19 that the labeled multi-Bernoulli is closed under the prediction step.

Proposition 3.1. Suppose that the multi-target posterior density is a labeled multi-Bernoulli with parameter
set π = {r(ℓ), p(ℓ)}ℓ∈L, and that the multi-target birth model is a labeled multi-Bernoulli with parameter set

πB = {r(ℓ)B , p
(ℓ)
B }ℓ∈B (where L ∩ B = ∅), then the multi-target predicted density is also a labeled multi-Bernoulli

with parameter set

π+ =
{(
r
(ℓ)
+,S , p

(ℓ)
+,S

)}
ℓ∈L

∪
{(
r
(ℓ)
B , p

(ℓ)
B

)}
ℓ∈B

, (27)

where

r
(ℓ)
+,S = ηS(ℓ)r

(ℓ), (28)

p
(ℓ)
+,S = ⟨pS(·, ℓ)f(x|·, ℓ), p(·, ℓ)⟩ /ηS(ℓ), (29)

ηS(ℓ) = ⟨pS(·, ℓ), p(·, ℓ)⟩ (30)

Remark 3.2. The multi-target prediction for a labeled multi-Bernoulli actually coincides with the prediction for
the unlabeled multi-Bernoulli and interpreting the component indices as track labels.

3.2 LMB Update

While the labeled multi-Bernoulli family is closed under the prediction operation, it is not closed under the
update operation. Inspired by the multi-Bernoulli filter,15 we seek the labeled multi-Bernoulli approximation that
matches the first moment of the multi-target posterior density. One such labeled multi-Bernoulli approximation
is given in.19

Proposition 3.3. Suppose that the multi-target predicted density is a labeled multi-Bernoulli with parameter

set π+={r(ℓ)+ , p
(ℓ)
+ }ℓ∈L+ . The labeled multi-Bernoulli that matches exactly the first moment of the multi-target

posterior density is π(·|Z) = {(r(ℓ), p(ℓ)(·))}ℓ∈L+ where

r(ℓ) =
∑

(I+,θ)∈F(L+)×Θ(I+)

w(I+,θ)(Z)1I+(ℓ), (31)

p(ℓ)(x) =
1

r(ℓ)

∑
(I+,θ)∈F(L+)×Θ(I+)

w(I+,θ)(Z)1I+(ℓ)p
(θ)(x, ℓ|Z), (32)

w(I+,θ)(Z) ∝
[
η
(θ)
Z

]I+ ∏
ℓ∈L+−I+

(
1− r

(ℓ)
+

) ∏
i∈I+

1L+(i)r
(i)
+ , (33)

p(θ)(x, ℓ|Z) = p+(x, ℓ)ψZ(x, ℓ; θ)

η
(θ)
Z (ℓ)

, (34)

η
(θ)
Z (ℓ) = ⟨p+(·, ℓ), ψZ(·, ℓ; θ)⟩ . (35)

The key advantage of the labeled multi-Bernoulli update is that it only involves one approximation of the
multi-target posterior density. In contrast the multi-Bernoulli filter requires two approximations on the multi-
target posterior probability generating functional.15
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The mean cardinality of the labeled multi-Bernoulli approximation is identical to that of the full posterior.
However, the cardinality distributions themselves differ, since the cardinality distribution of the labeled multi-
Bernoulli approximation follows the one for a multi Bernoulli RFS while the cardinality distribution of the
full posterior follows that of a Generalized labeled multi-Bernoulli (GLMB) RFS. Although there are many
possible choices of approximate labeled multi-Bernoulli posteriors, the above choice preserves the estimated
spatial densities of each track and matches exactly the first moment.19

3.3 Efficient Implementation of the Labeled Multi-Bernoulli Filter

The labeled multi-Bernoulli form can naturally be decomposed into products of smaller labeled multi-Bernoullis
that allows for parallel update of ‘groups’ of closely spaced targets and their associated measurements, which
drastically reduces computation time. Target grouping is based on a standard gating procedure which also parti-
tions the measurement set, resulting in groups of targets and measurements which can be considered statistically
independent.5 Each resultant group is usually much smaller than the entire multi-target state and measurement,
and can then be updated in parallel, which is usually much simpler and faster than updating the entire multi-
target state as a single group. The update for each group is performed by expanding the labeled multi-Bernoulli
prediction into δ-GLMB form, and performing a standard δ-GLMB update resulting in a δ-GLMB posterior.17

The posterior for each group is then collapsed to a matching labeled multi-Bernoulli approximation after which
groups are recombined and the recursion continues. This proposed implementation applies to both Gaussian
Mixture and Sequential Monte Carlo based representations for the underlying single target densities.19

3.3.1 Grouping and Gating

Let {L(1)
+ , ...,L(N)

+ } be a partition of the label set L+ = L ∪ B, and {Z(0), Z(1), ..., Z(N)} be a partition of the

measurement set Z. A grouping G(n) is defined as the set of pairs {(L(1)
+ , Z(1)), ..., (L(N)

+ , Z(N))} and each pair

G(n) = (L(n)
+ , Z(n)) is referred to as a group. Note that Z(0) is the set of measurements which are not assigned

to any target labels.

We are interested in groupings of target labels and likely corresponding measurements. To generate such
groupings, we start with an initial grouping of each labeled Bernoulli component ℓ and any associated measure-
ments which fall within its prediction gates:

G̃(ℓ) = ({ℓ}, {z : dMHD(ẑ
(ℓ), z) <

√
γ}). (36)

where dMHD(ẑ
(ℓ), z) is the Mahalanobis distance (MHD) between the predicted measurement for track ℓ and the

received measurement z ∈ Z, and γ is the gating distance threshold calculated using the inverse Chi-squared
cumulative distribution corresponding to the desired σ-gate size for gating of measurements from tracks. Then,
tentative groups with common measurements

Z(i) ∩ Z(j) ̸= ∅ (37)

are merged as follows

G̃(i,j) = (L(i)
+ ∪ L(j)

+ , Z(i) ∪ Z(j)). (38)

The merging is repeated for all tentative groups until there are no common measurements. Finally, a total of N
groups G(1), ...,G(N) of tracks and associated measurements is obtained. Consequently, the predicted multi-target
density can be rewritten as

π+ =
N∪
i=1

π
(i)
+ (39)

where
π

(i)
+ =

{
(r

(ℓ)
+ , p

(ℓ)
+ )
}
ℓ∈L(i)

+

(40)
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3.3.2 Parallel δ-GLMB Group Updates

Since the predicted multi-target density for each group is a labeled multi-Bernoulli of the form (39), we need
to express it in δ-GLMB form, in order to apply the data update. The δ-GLMB form for the i-th group

G(i) = (L(i)
+ , Z(i)) is given by

π
(i)
+ (X+) = ∆(X+)

∑
I+∈F(L(i)

+ )

w
(I+)
+,i δI+(L(X+)) [p+]

X+ (41)

where
w

(I+)
+,i =

∏
ℓ∈L(i)

+ −I+

(
1− r

(ℓ)
+

) ∏
ℓ′∈I+

1L(i)
+

(ℓ′)r
(ℓ′)
+ ,

Due to the smaller label space within one group, the number of hypotheses across all groups is significantly
smaller than for the number of hypotheses in case of a single big group.

A brute-force way to enumerate the sum is to generate all possible combinations for a set of labels L(i)
+

and cardinalities n = 0, 1, . . . , |L(i)
+ |. The number of combinations for each cardinality is given by the binomial

coefficient C(|L(i)
+ |, n) = |L(i)

+ |!/(n!(|L(i)
+ |−n)!) and the number of combinations for a set of track labels is 2|L

(i)
+ |.

Consequently explicit evaluation of all combinations is only possible for small |L(i)
+ |. For larger |L(i)

+ |, the sum can
be approximated to its k most significant terms by use of the k-shortest paths algorithm without enumerating
all possible terms.17 Consequently, I+ only consists of the most significant hypotheses.

The δ-GLMB update for each group i is given by

π(i)(X+|Z(i)) = ∆(X+)
∑

(I+,θ)∈F(L(i)
+ )×ΘI+

w(I+,θ)(Z(i))δI+(L(X+))
[
p(θ)(·|Z(i))

]X+

where

w(I+,θ)(Z(i)) ∝
[
η
(θ)

Z(i)

]I+ ∏
ℓ∈L(i)

+ −I+

(
1− r

(ℓ)
+

) ∏
ℓ′∈I+

1L(i)
+

(ℓ′)r
(ℓ′)
+ (42)

p(θ)(x, ℓ|Z(i)) =
p+(x, ℓ)ψZ(i)(x, ℓ; θ)

η
(θ)

Z(i)(ℓ)
, (43)

η
(θ)

Z(i)(ℓ) = ⟨p+(x, ℓ), ψZ(i)(·, ℓ; θ)⟩ , (44)

ψZ(i)(x, ℓ; θ) =


pD(x,ℓ)pGg(z

(i)

θ(ℓ)
|x,ℓ)

κ(z
(i)

θ(ℓ)
)

, if θ(ℓ) > 0

1− pD(x, ℓ)pG, if θ(ℓ) = 0
. (45)

Observe, that (45) has to incorporate the gating probability pG,
3 since small gates increase the probability of

missed detection.

By representing the complete predicted distribution using several groups, the number of track labels |L(i)
+ |

within each group is significantly lower than the total number of possible labels |L+|. Since the update is
combinatorial, the number of components or hypotheses within each group grows exponentially in the number

of track labels |L(i)
+ |. Thus, for large |L(i)

+ | a truncation of the δ-GLMB distribution is required. The truncation
can be realized using ranked assignment algorithm which evaluates only the M most significant hypotheses
without evaluating all possible solutions.18 Since the complexity of ranked assignment algorithm is cubic, the
computational costs for the evaluation of multiple groups is generally cheaper, compared to the evaluation for a
single large group. Moreover, the evaluation for each group can be performed in parallel.
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3.3.3 Approximation of the updated δ-GLMB as labeled multi-Bernoulli

After performing the group updates across all groups G(i) for i = 1, ..., N the δ-GLMB form for each group is
then collapsed back to labeled multi-Bernoulli form

π(i)(·|Z(i)) ≈ π̃(i)(·|Z(i)) =
{(
r(ℓ,i), p(ℓ,i)

)}
ℓ∈L(i)

+

where r(ℓ,i), p(ℓ,i) are calculated according to (31)-(32) and taking the union of the approximate labeled multi-

Bernoulli groups given by π̃(i) yields the labeled multi-Bernoulli approximation to the multi-target posterior

π(·|Z) ≈ π̃(·|Z) =
N∪
i=1

π̃(i)(·|Z(i)). (46)

Remark 3.4. Theoretically in the worst case where all targets are close together, it may not be possible to
partition into smaller groups. In this case, the complexity of the update step is the same as that of the δ-GLMB
filter. However, our experience with empirical data suggests that in most scenarios we can partition the targets
into many groups with small numbers of targets.

3.4 Track Extraction

Since tracks are represented after update by a labeled multi-Bernoulli, an obvious track extraction scheme is to
pick all tracks with an existence probability higher than an application specific threshold:

X̂ =
{
(x̂, ℓ) : r(ℓ) > ϑ

}
(47)

where x̂ = argx max p(ℓ)(x). On the one hand, choosing a high value for ϑ significantly reduces the number
of clutter tracks at the cost of a delayed inclusion of a new-born track. On the other hand, low values for ϑ
report new-born tracks immediately at the cost of a higher number of clutter tracks. Choosing a high value for
ϑ, additional care has to be taken for missed detections. In case of pD ≈ 1, a missed detection considerably
reduces the existence probability. Consequently, one missed detection might suppress the output of a previously
confirmed track with r(ℓ) ≈ 1.

To mitigate this issue, a hysteresis is used, which activates the output if the maximum existence probability

r
(ℓ)
max of a track ℓ has once exceeded an upper threshold ϑu and if the current existence probability r(ℓ) is higher
than a lower threshold ϑl:

X̂ = {(x̂, ℓ) : r(ℓ)max > ϑu ∧ r(ℓ) > ϑl} (48)

4. A LARGE SCALE TRACKING DEMONSTRATION

This demonstration of the labeled multi-Bernoulli (LMB) filter involves 3D states and observations in x, y, z
coordinates, and features 1500 targets and various births and deaths throughout. Figure 1 shows the true tracks
in 3D-space to indicate the density and number of targets in this scenario. We note the the implementation for
this example is a standard serial implementation and has not been parallelised. Parallelisation would significant
improve teh speed of the as well as scalability.

The following dynamical and measurement models are used. The target state variable is a vector of 3D position
and velocity xk = [ px,k, ṗx,k, py,k, ṗy,k, pz,k, ṗz,k ]T . The single-target transition model is linear Gaussian with
transition density fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1) where

Fk−1 =


1 ∆ 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆ 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆
0 0 0 0 0 1

 , Qk−1 = σ2
ν



∆4

4
∆3
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∆3

2 ∆2 0 0 0 0

0 0 ∆4

4
∆3

2 0 0
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4
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,

Distribution A: Approved for public release. Distribution is Unlimited.



∆ = 1s is the sampling period, and σν = 5km/s2 is the standard deviation of the process noise. The probability
of survival pS,k = 0.99. The cardinality distributions involved have a maximum support of Nmax = 2000 terms.
The birth process is modeled as a Poisson RFS with an average of 15 births per scan, coming from 3 different
positions in the 3D surveillance region.

The probability of detection pD,k = 0.98. The single-target measurement model is also linear Gaussian with
likelihood gk(z|x) = N (z;Hkx,Rk) where

Hk =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , Rk = σ2
ε

1 0 0
0 1 0
0 0 1

 ,
σε = 10km is the standard deviation of the measurement noise. Clutter is modeled as a Poisson RFS with
uniform distribution at an average of 100 points per scan.
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Figure 1. 3D tracks for approximately 1500 targets.

Note that we use the linear Gaussian model for this example as a proof-of-concept, to show that the proposed
LMB filter can handle a large number of targets. Non-linear models that include non-uniform clutter, non-
uniform sensor field-of-view can be easily accommodated using a particle implementation. However, the cost
of single-target filtering increases, which in turn increase the computational requirement for the multi-target
tracker.

For performance evaluation, the Optimal Sub-Pattern Assignment (OSPA) distance between the estimated

and true multiple target state is used as the estimation error.13 The OSPA metric d̄
(c)
p is defined as follows. Let

d(c)(x, y) := min (c, ∥x− y∥) for x, y ∈ X , and Πk denote the set of permutations on {1, 2, . . . , k} for any positive
integer k. Then, for p ≥ 1, c > 0, and X = {x1, . . . , xm} and Y = {y1, . . . , yn},

d̄(c)p (X,Y ) :=

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1
p

if m ≤ n, and d̄
(c)
p (X,Y ) := d̄

(c)
p (Y,X) if m > n; and d̄

(c)
p (X,Y ) = d̄

(c)
p (Y,X) = 0 if m = n = 0. The OSPA

distance is interpreted as a p-th order per-target error, comprised of a p-th order per-target localization error
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and a p-th order per-target cardinality error. The order parameter p determines the sensitivity of the metric to
outliers, and the cut-off parameter c determines the relative weighting of the penalties assigned to cardinality
and localization errors.

Plots of true and estimated multiple target cardinality as well as the OSPA miss-distance (for p = 1 and
c = 30km) from the labeled multi-Bernoulli filter are shown in figures 2 and 3. From the plot of the cardinality in
figure 2, it appears that the labeled multi-Bernoulli filter determines the number of targets within a reasonable
error. The plots of the OSPA miss distance,13 from figure 3, confirm the correct operation of the filter; the errors
are consistent with the measurement noise in the model and the number of target as seen from the cardinality
plot. Execution time per cluster for each iteration of the filter on a single standard laptop computer is shown in
figure 4. Consequently, with modest computational resources, the labeled multi-Bernoulli filter can potentially
deliver real time performance in large scale tracking.
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Figure 2. LMB estimated cardinality versus time
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Figure 3. OSPA miss distance given by total, localization component and cardinality component

5. CONCLUSION

The RFS approach is ideally suited to networked multi-sensor multi-object estimation problems, such as space
situational awareness. It provides a general systematic treatment of multi-target system and accommodates:
nonlinear motion and measurement models; unknown time varying target number; multi-sensor data with support
for heterogeneous sensor types; limited sensor field-of-view. More importantly, it provides scalable algorithms
that can be uses to track a large number of targets. A 3D scenario using Gaussian mixture implementations has
shown that the labeled multi-Bernoulli filter can simultaneously track up to 1500 targets, with different birth
and death times, on a single standard laptop computer. Performance analysis of the filter also suggests that it
accurately estimates target numbers and states in dense situations. We note the the implementation for this
example is a standard serial implementation and has not been parallelised. Without parallelization, execution
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Figure 4. Average execution time per cluster for each iteration

times for each iteration was of the order of tens of seconds. Parallelisation would significantly improve the
speed of the algorithm as well as scalability. Consequently, with modest computational resources, the labeled
multi-Bernoulli filter can potentially scale to real time large scale tracking.
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